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In this Supplementary Information we provide some
additional technical details about the experiment and the
computation of diffusion constants and the identification
of defects, as well as a more detailed comparison of our
results with the predictions of elasticity theory.

I. EXPERIMENTAL DETAILS

The monolayer consists of polystyrene beads with (4.5
µm diameter) doped with iron oxide (Dynabeads R© 4.5,
Invitrogen) making them superparamagnetic. The beads
are sedimented by gravity to an otherwise interaction
free interface of a hanging droplet spanned by surface
tension in a top sealed cylindrical hole (4 mm in diame-
ter) of an optical cuvette. The thermal activation height
(out of plane motion) is less than 20 nm and is therefore
neglected. Computer controlled regulation loops count-
ing particle numbers and measuring their size relative
to focal plane guarantee the flatness of the water-air in-
terface. This is done by adjusting the volume of the
droplet in sub-nanoliter units with a micro-syringe driven
by a micro-stage with a frequency of 0.1 Hz. To align
the whole setup with respect to gravity the experiment
is mounted on a flexible tripod steered by an inclina-
tion sensor. This way changes in inclination are sup-
pressed below 10−6 rad and spatial density variations
are less than 0.1% in the field of view. The monitored
area is 863 × 645 µm2 recorded with a CCD-camera of
1392 × 1040 pixels (Marlin F 145-B), containing about
3000 particles, whereas the whole monolayer consists of
up to 5× 104 particles. An elaborated description of the
experimental setup can be found in [1].

II. NUMERICAL DETAILS

The simulated system consists of M = 52× 60 = 3120
particles in an almost quadratic simulations box with pe-
riodic boundary conditions. A cutoff of rc = 5.0a for the
interactions was used together with cell lists to accelerate
the simulations. The system is studied with Metropo-
lis Monte Carlo simulations at constant particle number,
box size and temperature. Trial moves consist of single
particle displacements carried out with a maximum dis-
placement size selected to obtain an average acceptance
probability of about 50%. The simulation time scale is
mapped to the physical time scale by comparing the self

diffusion constants in the liquid state obtained from sim-
ulations and experiments (see Supplementary Informa-
tion). In all our experiments and simulations Γ = 160
leading to a Young’s modulus of K = 1.258Γ = 201.3 [2].

III. DIFFUSION

To monitor the long time diffusion of the defect strings,
we determine the mean square displacement 〈∆r(t)2〉 =
〈[r(t) − r(0)]2〉 of the center of mass r of the string
endpoints. The diffusion constant Dstring is estimated
by least square fit to the relation 〈∆r(t)2〉 = 4Dstringt
giving the diffusion constants shown in Fig. 2 of the
main text. To relate the physical time and the time
scale τ of the simulation corresponding to one Monte
Carlo sweep, we have determined the diffusion constant
of a particle in the fluid, which is also known experi-
mentally [3, 4]. For M = 780 particles and Γ = 40,
the Monte Carlo simulation yields a diffusion constant
of D = 1.69 ± 0.19 × 10−6 a20/τ . From the experimen-
tal diffusion constant Dexp = 0.11µm2/s one obtains

τ = a20/(0.11µm2/s) for the time scale of the simulation.

IV. DEFECT IDENTIFICATIONS

A quantitative description of the dynamics of defect
strings requires the accurate identification and location of
dislocations and vacancies. Here, we identify dislocations
as pairs of particles with 5 and 7 neighbors, respectively
[5]. Neighbor numbers are determined using a Voronoi
analysis [6]. The position of a dislocation is defined to be
at the center of mass of the 5- and 7-coordinated particles
and the Burgers vector of the dislocation is orthogonal
to the vector pointing from the 5- to the 7-coordinated
particle. Single vacancies can, in principle, also be identi-
fied from the position of the dislocations associated with
them [7]. However, if vacancies form a cluster, some dis-
locations annihilate and the individual positions of the
defects can not be resolved any longer. Here, we identify
vacancies based on a underlying reference lattice consist-
ing of a perfect triangular crystal with the density of
the defect free crystal. The defect identification consist
of the following steps: Each particle is first assigned to
its closest perfect lattice site. The perfect lattice is then
positioned to minimize the sum of distances between par-
ticles and the assigned lattices sites. With this step, the
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lattice follows the center-of-mass motion of the crystal.
The positions of the vacancies are then identified as the
position of unoccupied lattice sites. This procedure to
locate vacancies is robust and the number of vacancies is
constant throughout the simulation even if the vacancies
assemble into a string.

As explained in the main text, the dynamics of va-
cancy strings consist of long gliding periods interrupted
by rotation events at which the direction of motion of
the string changes. The rotation rate krot = Nrot/t is
the number Nrot of rotation events that have occurred
during the time t. To determine the rotation rate, we
identify the orientation of the strings at each time step
and detect rotation events based on changes in the string
orientation. The string orientation is defined by the rela-
tive position of the dislocations that terminate the strings
and it coincides with the direction of the Burgers vectors.
The string orientation is undefined at the rotation points,
where the string can change between two orientations.

V. DISLOCATION INTERACTION

According to linear elasticity theory, the interaction
energy of two dislocations with Burgers vectors b1 and
b2 and separated by R is given by [8]

βF = −K
4π

[
(b1 · b2) lnR− (b1 ·R)(b2 ·R)

R2

]
, (1)

where K is Young’s modulus and β = 1/kBT . In a co-
ordinate system with x-axis in the direction of motion,
the separation vector for a string of N vacancies can be
written as R = (s,N

√
3/2) and the Burgers vectors are

given b1 = (−1, 0), b2 = (1, 0). Using the dimensionless

variable x = 2s/(
√

3N) one then obtains

βF (x) =
K

8π

(
1− x2

1 + x2
+ ln

1 + x2

2

)
, (2)

where the free energy has been shifted to vanish at its
minimum value. This function has the shape of a sym-
metric double well with minima located at at x = ±1.
The minima are separated by a barrier of height h =
(K/8π)(1 − ln 2) at x = 0. As shown in Fig. 3 of
the main paper, the effective dislocation interactions ex-
tracted from our experiments and simulations display the
double-well form predicted by elasticity theory for suffi-
ciently long strings. A more detailed comparison is pro-
vided in the following.

The positions x of the minima obtained from the ex-
periment and simulations are depicted in Fig. 1 together
with the prediction of elasticity theory shown as horizon-
tal line. For strings of more than N > 3 vacancies, both
experiment and simulation agree very well with elastic-
ity theory. For short strings with N ≤ 3, however, the
double-well form disappears and the minimum shifts to
x = 0.
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FIG. 1: Position x of the local minima as a function of string
length N obtained from simulations (red) and experiments
(blue). For N > 3 the prediction of elasticity theory (black
horizontal line) is in excellent agreement with experiment and
simulations.
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FIG. 2: Barrier height h obtained as a function of the string
length N from simulations (red) compared to the predictions
of elasticity theory (black horizontal line). While for short
strings the barrier disappears, for long strings it converges
to a constant value which exceeds the prediction of elasticity
theory by about 50 %.

Barrier heights h obtained for different string lengths
N are depicted in Fig. 2. Since the statistics of the exper-
imental measurements are insufficient for an accurate de-
termination of barrier heights, only simulation results are
shown. While elasticity theory predicts a barrier height
of h = 2.45kBT independent of string length, the barrier
height determined in our simulations vanishes for N = 2
and then grows with string length until it converges to a
constant value for strings consisting of more than about
N = 7 vacancies. The barrier height obtained for long
strings exceeds the elasticity theory value by about 50%.
While one expects elasticity theory to break down at
small distances, the origin of this discrepancy observed
in the long string limit is unclear and might be due to
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non-linear interactions.
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